A Machine Learning Based Reconstruction Method for Satellite Remote Sensing of Soil Moisture Images with In Situ Observations
نویسندگان
چکیده
Surface soil moisture is an important environment variable that is dominant in a variety of research and application areas. Acquiring spatiotemporal continuous soil moisture observations is therefore of great importance. Weather conditions can contaminate optical remote sensing observations on soil moisture, and the absence of remote sensors causes gaps in regional soil moisture observation time series. Therefore, reconstruction is highly motivated to overcome such contamination and to fill in such gaps. In this paper, we propose a novel image reconstruction algorithm that improved upon the Satellite and In situ sensor Collaborated Reconstruction (SICR) algorithm provided by our previous publication. Taking artificial neural networks as a model, complex and highly variable relationships between in situ observations and remote sensing soil moisture is better projected. With historical data for the network training, feedforward neural networks (FNNs) project in situ soil moisture to remote sensing soil moisture at better performances than conventional models. Consequently, regional soil moisture observations can be reconstructed under full cloud contamination or under a total absence of remote sensors. Experiments confirmed better reconstruction accuracy and precision with this improvement than with SICR. The new algorithm enhances the temporal resolution of high spatial resolution remote sensing regional soil moisture observations with good quality and can benefit multiple soil moisture-based applications and research.
منابع مشابه
Estimation of soil moisture using optical, thermal and radar Remote Sensing )Case Study: South of Tehran(
Traditional methods of field measurement of soil moisture in addition to the difficulty, the need for manpower and money and fail to take place on a large scale to be able to show moisture. Therefore, remote sensing has become a widespread use .Landsat 8 satellite data and Sentinel-1 radar satellite from Tehran were provided. 72 soil samples were taken at the same time by satellite passing from...
متن کاملVolumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کاملDETERMINATION OF SENSOR LOCATIONS FOR MONITORING OF ORCHARDS PARAMETERS USING REMOTE SENSING AND GIS
Optimal management of the farm and increasing production efficiency can be achieved by collecting accurate and appropriate information from the fields. The aim of this study is to determine the location of soil moisture sensors in pistachio orchards. For this purpose, initial information was obtained using satellite image processing. Then, using clustering method the information was clustered t...
متن کاملDistribution map of the different lithologic units in loess plateau of eastern Golestan by using remote sensing technique; Aghband research area
Introduction: Along with the climate, Soil is an essential natural resource. Although soil studies in Iran have been started more than 50 years ago, the soil map of the country has not been fully prepared yet, and only 20-25% of the lands have been mapped already. Many soil maps of Iran need to be updated, but the common methods in soil mapping are costly and time-consuming. Hence, using data o...
متن کاملEvaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017